Coverage for ibllib/qc/dlc.py: 95%
168 statements
« prev ^ index » next coverage.py v7.3.2, created at 2023-10-11 11:13 +0100
« prev ^ index » next coverage.py v7.3.2, created at 2023-10-11 11:13 +0100
1"""DLC QC
2This module runs a list of quality control metrics on the dlc traces.
4Example - Run DLC QC
5 qc = DlcQC(eid, 'left', download_data=True)
6 qc.run()
7Question:
8 We're not extracting the audio based on TTL length. Is this a problem?
9"""
10import logging
11import warnings
12from inspect import getmembers, isfunction
14import numpy as np
16from ibllib.qc import base
17import one.alf.io as alfio
18from one.alf.exceptions import ALFObjectNotFound
19from one.alf.spec import is_session_path
20from iblutil.util import Bunch
21from brainbox.behavior.dlc import insert_idx, SAMPLING
23_log = logging.getLogger(__name__)
26class DlcQC(base.QC):
27 """A class for computing camera QC metrics"""
29 bbox = {
30 'body': {
31 'xrange': range(201, 500),
32 'yrange': range(81, 330)
33 },
34 'left': {
35 'xrange': range(301, 700),
36 'yrange': range(181, 470)
37 },
38 'right': {
39 'xrange': range(301, 600),
40 'yrange': range(110, 275)
41 },
42 }
44 dstypes = {
45 'left': [
46 '_ibl_leftCamera.dlc.*', '_ibl_leftCamera.times.*', '_ibl_leftCamera.features.*', '_ibl_trials.table.*'
47 ],
48 'right': [
49 '_ibl_rightCamera.dlc.*', '_ibl_rightCamera.times.*', '_ibl_rightCamera.features.*', '_ibl_trials.table.*'
50 ],
51 'body': [
52 '_ibl_bodyCamera.dlc.*', '_ibl_bodyCamera.times.*'
53 ],
54 }
56 def __init__(self, session_path_or_eid, side, ignore_checks=['check_pupil_diameter_snr'], **kwargs):
57 """
58 :param session_path_or_eid: A session eid or path
59 :param side: The camera to run QC on
60 :param ignore_checks: Checks that won't count towards aggregate QC, but will be run and added to extended QC
61 :param log: A logging.Logger instance, if None the 'ibllib' logger is used
62 :param one: An ONE instance for fetching and setting the QC on Alyx
63 """
64 # Make sure the type of camera is chosen
65 self.side = side 1ba
66 # When an eid is provided, we will download the required data by default (if necessary)
67 download_data = not is_session_path(session_path_or_eid) 1ba
68 self.download_data = kwargs.pop('download_data', download_data) 1ba
69 super().__init__(session_path_or_eid, **kwargs) 1ba
70 self.data = Bunch() 1ba
72 # checks to be added to extended QC but not taken into account for aggregate QC
73 self.ignore_checks = ignore_checks 1ba
74 # QC outcomes map
75 self.metrics = None 1ba
77 def load_data(self, download_data: bool = None) -> None:
78 """Extract the data from data files
79 Extracts all the required task data from the data files.
81 Data keys:
82 - camera_times (float array): camera frame timestamps extracted from frame headers
83 - dlc_coords (dict): keys are the points traced by dlc, items are x-y coordinates of
84 these points over time, those with likelihood <0.9 set to NaN
86 :param download_data: if True, any missing raw data is downloaded via ONE.
87 """
88 if download_data is not None: 1da
89 self.download_data = download_data
90 if self.one and not self.one.offline: 1da
91 self._ensure_required_data() 1da
93 alf_path = self.session_path / 'alf' 1a
95 # Load times
96 self.data['camera_times'] = alfio.load_object(alf_path, f'{self.side}Camera')['times'] 1a
97 # Load dlc traces
98 dlc_df = alfio.load_object(alf_path, f'{self.side}Camera', namespace='ibl')['dlc'] 1a
99 targets = np.unique(['_'.join(col.split('_')[:-1]) for col in dlc_df.columns]) 1a
100 # Set values to nan if likelihood is too low
101 dlc_coords = {} 1a
102 for t in targets: 1a
103 idx = dlc_df.loc[dlc_df[f'{t}_likelihood'] < 0.9].index 1a
104 dlc_df.loc[idx, [f'{t}_x', f'{t}_y']] = np.nan 1a
105 dlc_coords[t] = np.array((dlc_df[f'{t}_x'], dlc_df[f'{t}_y'])) 1a
106 self.data['dlc_coords'] = dlc_coords 1a
108 # load stim on times
109 self.data['stimOn_times'] = alfio.load_object(alf_path, 'trials', namespace='ibl')['stimOn_times'] 1a
111 # load pupil diameters
112 if self.side in ['left', 'right']: 1a
113 features = alfio.load_object(alf_path, f'{self.side}Camera', namespace='ibl')['features'] 1a
114 self.data['pupilDiameter_raw'] = features['pupilDiameter_raw'] 1a
115 self.data['pupilDiameter_smooth'] = features['pupilDiameter_smooth'] 1a
117 def _ensure_required_data(self):
118 """
119 Ensures the datasets required for QC are local. If the download_data attribute is True,
120 any missing data are downloaded. If all the data are not present locally at the end of
121 it an exception is raised.
122 :return:
123 """
124 for ds in self.dstypes[self.side]: 1da
125 # Check if data available locally
126 if not next(self.session_path.rglob(ds), None): 1da
127 # If download is allowed, try to download
128 if self.download_data is True: 1d
129 assert self.one is not None, 'ONE required to download data' 1d
130 try: 1d
131 self.one.load_dataset(self.eid, ds, download_only=True) 1d
132 except ALFObjectNotFound: 1d
133 raise AssertionError(f'Dataset {ds} not found locally and failed to download') 1d
134 else:
135 raise AssertionError(f'Dataset {ds} not found locally and download_data is False') 1d
137 def _compute_trial_window_idxs(self):
138 """Find start and end times of a window around stimulus onsets in video indices."""
139 window_lag = -0.5 1ca
140 window_len = 2.0 1ca
141 start_window = self.data['stimOn_times'] + window_lag 1ca
142 start_idx = insert_idx(self.data['camera_times'], start_window) 1ca
143 end_idx = np.array(start_idx + int(window_len * SAMPLING[self.side]), dtype='int64') 1ca
144 return start_idx, end_idx 1ca
146 def _compute_proportion_nan_in_trial_window(self, body_part):
147 """Find proportion of NaN frames for a given body part in trial-based windows."""
148 # find timepoints in windows around stimulus onset
149 start_idx, end_idx = self._compute_trial_window_idxs() 1ca
150 # compute fraction of points in windows that are NaN
151 dlc_coords = np.concatenate([self.data['dlc_coords'][body_part][0, start_idx[i]:end_idx[i]] 1ca
152 for i in range(len(start_idx))])
153 prop_nan = np.sum(np.isnan(dlc_coords)) / dlc_coords.shape[0] 1ca
154 return prop_nan 1ca
156 def run(self, update: bool = False, **kwargs) -> (str, dict):
157 """
158 Run DLC QC checks and return outcome
159 :param update: if True, updates the session QC fields on Alyx
160 :param download_data: if True, downloads any missing data if required
161 :returns: overall outcome as a str, a dict of checks and their outcomes
162 """
163 _log.info(f'Running DLC QC for {self.side} camera, session {self.eid}') 1da
164 namespace = f'dlc{self.side.capitalize()}' 1da
165 if all(x is None for x in self.data.values()): 1da
166 self.load_data(**kwargs) 1da
168 def is_metric(x): 1a
169 return isfunction(x) and x.__name__.startswith('check_') 1a
171 checks = getmembers(DlcQC, is_metric) 1a
172 self.metrics = {f'_{namespace}_' + k[6:]: fn(self) for k, fn in checks} 1a
174 ignore_metrics = [f'_{namespace}_' + i[6:] for i in self.ignore_checks] 1a
175 metrics_to_aggregate = {k: v for k, v in self.metrics.items() if k not in ignore_metrics} 1a
176 outcome = self.overall_outcome(metrics_to_aggregate.values()) 1a
178 if update: 1a
179 extended = { 1a
180 k: 'NOT_SET' if v is None else v
181 for k, v in self.metrics.items()
182 }
183 self.update_extended_qc(extended) 1a
184 self.update(outcome, namespace) 1a
185 return outcome, self.metrics 1a
187 def check_time_trace_length_match(self):
188 '''
189 Check that the length of the DLC traces is the same length as the video.
190 '''
191 dlc_coords = self.data['dlc_coords'] 1ia
192 times = self.data['camera_times'] 1ia
193 for target in dlc_coords.keys(): 1ia
194 if times.shape[0] != dlc_coords[target].shape[1]: 1ia
195 _log.warning(f'{self.side}Camera length of camera.times does not match ' 1ia
196 f'length of camera.dlc {target}')
197 return 'FAIL' 1ia
198 return 'PASS' 1i
200 def check_trace_all_nan(self):
201 '''
202 Check that none of the dlc traces, except for the 'tube' traces, are all NaN.
203 '''
204 dlc_coords = self.data['dlc_coords'] 1ja
205 for target in dlc_coords.keys(): 1ja
206 if 'tube' not in target: 1ja
207 if all(np.isnan(dlc_coords[target][0])) or all(np.isnan(dlc_coords[target][1])): 1ja
208 _log.warning(f'{self.side}Camera dlc trace {target} all NaN') 1ja
209 return 'FAIL' 1ja
210 return 'PASS' 1ja
212 def check_mean_in_bbox(self):
213 '''
214 Empirical bounding boxes around average dlc points, averaged across time and points;
215 sessions with points out of this box were often faulty in terms of raw videos
216 '''
218 dlc_coords = self.data['dlc_coords'] 1ea
219 with warnings.catch_warnings(): 1ea
220 warnings.simplefilter("ignore", category=RuntimeWarning) 1ea
221 x_mean = np.nanmean([np.nanmean(dlc_coords[k][0]) for k in dlc_coords.keys()]) 1ea
222 y_mean = np.nanmean([np.nanmean(dlc_coords[k][1]) for k in dlc_coords.keys()]) 1ea
224 xrange = self.bbox[self.side]['xrange'] 1ea
225 yrange = self.bbox[self.side]['yrange'] 1ea
226 if int(x_mean) not in xrange or int(y_mean) not in yrange: 1ea
227 return 'FAIL' 1e
228 else:
229 return 'PASS' 1ea
231 def check_pupil_blocked(self):
232 '''
233 Check if pupil diameter is nan for more than 60 % of the frames
234 (might be blocked by a whisker)
235 Check if standard deviation is above a threshold, found for bad sessions
236 '''
238 if self.side == 'body': 1fa
239 return 'NOT_SET' 1fa
241 if np.mean(np.isnan(self.data['pupilDiameter_raw'])) > 0.9: 1fa
242 _log.warning(f'{self.eid}, {self.side}Camera, pupil diameter too often NaN') 1f
243 return 'FAIL' 1f
245 thr = 5 if self.side == 'right' else 10 1fa
246 if np.nanstd(self.data['pupilDiameter_raw']) > thr: 1fa
247 _log.warning(f'{self.eid}, {self.side}Camera, pupil diameter too unstable') 1f
248 return 'FAIL' 1f
250 return 'PASS' 1fa
252 def check_lick_detection(self):
253 '''
254 Check if both of the two tongue edge points are less than 10 % NaN, indicating that
255 wrong points are detected (spout edge, mouth edge)
256 '''
258 if self.side == 'body': 1ha
259 return 'NOT_SET' 1ha
260 dlc_coords = self.data['dlc_coords'] 1ha
261 nan_l = np.mean(np.isnan(dlc_coords['tongue_end_l'][0])) 1ha
262 nan_r = np.mean(np.isnan(dlc_coords['tongue_end_r'][0])) 1ha
263 if (nan_l < 0.1) and (nan_r < 0.1): 1ha
264 return 'FAIL' 1h
265 return 'PASS' 1ha
267 def check_pupil_diameter_snr(self):
268 if self.side == 'body': 1ga
269 return 'NOT_SET' 1ga
270 thresh = 5 if self.side == 'right' else 10 1ga
271 if 'pupilDiameter_raw' not in self.data.keys() or 'pupilDiameter_smooth' not in self.data.keys(): 1ga
272 return 'NOT_SET'
273 # compute signal to noise ratio between raw and smooth dia
274 good_idxs = np.where(~np.isnan(self.data['pupilDiameter_smooth']) & ~np.isnan(self.data['pupilDiameter_raw']))[0] 1ga
275 snr = (np.var(self.data['pupilDiameter_smooth'][good_idxs]) / 1ga
276 (np.var(self.data['pupilDiameter_smooth'][good_idxs] - self.data['pupilDiameter_raw'][good_idxs])))
277 if snr < thresh: 1ga
278 return 'FAIL', float(round(snr, 3)) 1g
279 return 'PASS', float(round(snr, 3)) 1ga
281 def check_paw_close_nan(self):
282 if self.side == 'body': 1ca
283 return 'NOT_SET' 1ca
284 thresh_fail = 0.20 # prop of NaNs above this threshold means the check fails 1ca
285 thresh_warning = 0.10 # prop of NaNs above this threshold means the check is a warning 1ca
286 # compute fraction of points in windows that are NaN
287 prop_nan = self._compute_proportion_nan_in_trial_window(body_part='paw_r') 1ca
288 if prop_nan > thresh_fail: 1ca
289 return 'FAIL' 1c
290 elif prop_nan > thresh_warning: 1ca
291 return 'WARNING' 1c
292 else:
293 return 'PASS' 1ca
295 def check_paw_far_nan(self):
296 if self.side == 'body': 1ca
297 return 'NOT_SET' 1ca
298 thresh_fail = 0.20 # prop of NaNs above this threshold means the check fails 1ca
299 thresh_warning = 0.10 # prop of NaNs above this threshold means the check is a warning 1ca
300 # compute fraction of points in windows that are NaN
301 prop_nan = self._compute_proportion_nan_in_trial_window(body_part='paw_l') 1ca
302 if prop_nan > thresh_fail: 1ca
303 return 'FAIL' 1c
304 elif prop_nan > thresh_warning: 1ca
305 return 'WARNING' 1c
306 else:
307 return 'PASS' 1ca
310def run_all_qc(session, cameras=('left', 'right', 'body'), one=None, **kwargs):
311 """Run DLC QC for all cameras
312 Run the DLC QC for left, right and body cameras.
313 :param session: A session path or eid.
314 :param update: If True, QC fields are updated on Alyx.
315 :param cameras: A list of camera names to perform QC on.
316 :return: dict of DlcQC objects
317 """
318 qc = {}
319 run_args = {k: kwargs.pop(k) for k in ('download_data', 'update') if k in kwargs.keys()}
320 for camera in cameras:
321 qc[camera] = DlcQC(session, side=camera, one=one, **kwargs)
322 qc[camera].run(**run_args)
323 return qc